CATERPILLAR ENGINE
SPECIFICATIONS

I-6, 4-Stroke-Cycle Diesel
Bore... 130.0 mm (5.12 in)
Stroke.. 157.0 mm (6.18 in)
Displacement.. 12.5 L (762.8 in^3)
Aspiration................................... Turbocharged Aftercooled
Compression Ratio................................. 17.3:1
Rotation (from flywheel end)............... Counterclockwise
Weight, Net Dry (approximate kg, lb)....... 939 kg, 2070 lb

FEATURES

Emissions
Meets Tier 3, Stage IIIA emission requirements. Tier 3 refers to EPA (U.S.) standards. Stage IIIA refers to European standards.

Worldwide Supplier Capability
Caterpillar
- Casts engine blocks, heads, and cylinder liners.
- Machines critical components
- Assembles complete engine
Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable product. Factory-designed systems built at Caterpillar ISO certified facilities.

Testing
Prototype testing on every model:
- proves computer design
- verifies system torsional stability
- tests functionality on every model
Every Caterpillar engine is dynamometer tested under full load to ensure proper engine performance.

Full Range of Attachments
Wide range of bolt-on system expansion attachments, factory designed and tested.

Unmatched Product Support Offered Through Worldwide Caterpillar Dealer Network
More than 1,500 dealer outlets.
Caterpillar factory-trained dealer technicians service every aspect of your industrial engine. 99.7% of parts orders filled within 24 hours worldwide. Caterpillar parts and labor warranty. Preventive maintenance agreements available for repair before failure options.

Scheduled Oil Sampling program matches your oil sample against Caterpillar set standards to determine:
- internal engine component condition
- presence of unwanted fluids
- presence of combustion by-products

Web Site
For all your industrial power requirements, visit www.cat-industrial.com.
C13 ACERT™

INDUSTRIAL ENGINE
310 bkW (415 bhp)

STANDARD ENGINE EQUIPMENT

Air Inlet System
Air to air aftercooled (ATAAC)
Turbocharged

Control System
Electronic governing, PTO speed control
Programmable ratings
Cold mode start strategy
Automatic altitude compensation
Power compensation for fuel temperature
Programmable low and high idle and total engine limit
Electronic diagnostics and fault logging
Engine monitoring system
J1939 Broadcast (diagnostic and engine status)
ADEM™ A4

Cooling System
Thermostats and housing, vertical outlet
Jacket water pump, centrifugal
Water pump, inlet

Exhaust System
Exhaust manifold, dry
Optional exhaust outlet

Flywheels and Flywheel Housing
SAE No. 1 Flywheel housing

Fuel System
MEUI injection
Fuel filter, secondary (2 micron high performance)
Fuel transfer pump
Fuel priming pump
ACERT™ Technology

Lube System
Crankcase breather
Oil cooler
Oil filler
Oil filter
Oil pan front sump
Oil dipstick
Oil pump (gear driven)

General
Paint, Caterpillar Yellow
Vibration damper
Lifting eyes
Performance Curves

C13 ACERT™ Industrial Engine

310 kW (415 bhp)

Engine Torque (lb•ft) and **Engine Power** (bhp) vs. **Engine Speed (rpm)**

<table>
<thead>
<tr>
<th>Engine Speed rpm</th>
<th>Engine Power bhp</th>
<th>Engine Torque lb•ft</th>
<th>BSFC lb/bhp-hr</th>
<th>Fuel Rate gal/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>415</td>
<td>1038</td>
<td>.358</td>
<td>21.2</td>
</tr>
<tr>
<td>2000</td>
<td>415</td>
<td>1090</td>
<td>.351</td>
<td>20.8</td>
</tr>
<tr>
<td>1900</td>
<td>415</td>
<td>1148</td>
<td>.344</td>
<td>20.4</td>
</tr>
<tr>
<td>1800</td>
<td>415</td>
<td>1211</td>
<td>.339</td>
<td>20.1</td>
</tr>
<tr>
<td>1700</td>
<td>411</td>
<td>1269</td>
<td>.338</td>
<td>19.8</td>
</tr>
<tr>
<td>1600</td>
<td>402</td>
<td>1319</td>
<td>.338</td>
<td>19.4</td>
</tr>
<tr>
<td>1500</td>
<td>390</td>
<td>1364</td>
<td>.337</td>
<td>18.8</td>
</tr>
<tr>
<td>1400</td>
<td>373</td>
<td>1399</td>
<td>.337</td>
<td>17.9</td>
</tr>
<tr>
<td>1300</td>
<td>342</td>
<td>1381</td>
<td>.336</td>
<td>16.4</td>
</tr>
<tr>
<td>1200</td>
<td>308</td>
<td>1350</td>
<td>.336</td>
<td>14.8</td>
</tr>
</tbody>
</table>

From the library of Barrington Diesel Club